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ABSTRACr

This paper describes a new statistical approach to image segmentation.
Making use of Gibbs distribution models of Markov random fields a dynamic
programming based segmentation algorithm is developed. A number of
examples are presented which give an indication of the potential of this
approach.
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-)This report presents a new statistical approach to the image

segmentation problem. By notelling image data as a Markov random field
characterized by a Gibbs distriution, a dynamic programming algorithm is
developed. The primary contribution of the paper is this new near optimal
method for processing scenes described by the non-causal Gibbs model.

Image segmentation, the process of grouping image data into regions
with similar features is a component process in image understanding systems
and also serves as a tool for image enhancement. As such it has received
considerable attention in the literature. Many techniques work well on
noise free images with slow spatial variation in intensity. However, when
the data is noisy or textured, these algorithms become less reliable. In
this case it can be advantageous to statistically model the noise and any
texture which is random in nature. Furthermore, one must also take
advantage of two-dimensional spatial ergoticity to average the effects of
noise. If a region is spatially ergodic then a pixel and its neighbors
will have similar statistical properties. In its simpler forms, the Gibbs
model can be used to exploit this type of spatial continuity, and this is
its primary role in the segmentation algorithm.

Use of the Gibbs distribution dates back to the work of Ising [1] in
1925 who modelled molecular interaction in ferromagnetic materials, and it
has received considerable attention in both the statistical mechanics and
statistics literature [2]. However, only recently have attempts been made
to apply it to problems in image processing. In [4], the autobinomial form
of the Gibbs distribution was used to model texture. The algorithm in [5]
segments textured images hierarchically operating on successively smaller
blocks and uses Gibbs distributions to model texture. To our knowledge,
the work in [6] represents the first application of the Gibbs model to
Image Segmentation. The algorithm in [6] is highly parallel in nature with
the flavor of a 'relaxation' algorithm and requires a number of iterative
passes on the image data. The algorithm we propose processes the data in a

*, rester scan fashion, and only requires a single scan of the data. It will
be important to further study the trade-offs in the various algorithms.

The report is organized as follows. Section 4 T defines the
segmentation problem in a statistical framework, introduces somt notation,
and presents some background on Markov random fields. Section-4T then
presents the dynamic programming algorithm in detail for the case of
segmenting images consisting of uniform in4ensity regions in high levels of
additive white Gaussian noise. Section-Ir presents results of applying the
algorithms to some experimentally generated images consistant with this
model as well as some synthetic aperture radar images which are clearly
inconsistent with the assumed model. These results clearly demonstrate the

............ ....... *.. .... ..... . . .
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9 applicability of the technique to realistic data as well as the rob~utness
of the algorithm with 'spect to modelling assumptions. In Section 7.some
comments and concluding remarks are given, and extensions to this work
which are in progress are I lefly outlined.
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II. PROBLEM FORM.LA'"ION AND MATHEMATICAL BACKGROUND
SPrel iminry Defn ons

Let a class of scenes be characterized by a discrete finite random
field X = [Xii of size (N1 XN2 ), and let a realization of this field or a
specific scene be represented by the matrix x = [I. .1. It will be assumed1J

that each pixel (i, j) can belong to one of M distinct region types and
that Iij - a if pixel (i, J) is a member of region m, me[, 2, ... , M].

Associated with a specific scene is a set of K, (NlIN2 ) observation

matrices - = (yk I , y = [yi 1. For simplicity of exposition, we will

assame K = 1 and simply define y1 to be y = [yij]. However, it should be

pointed out that the algorithms presented below extend trivially to the
case of multiple observations such as with Landsat data. Since regions can
be textured or contain observation noise the range space of Yj is larger

than that of Iij. Thus y will be assumed to be a realization of a real

valued random field Y = [Yj 1. The general model which can we will employ

is
WI iJ F ( Xi ) ij1)

The field Wij is a random noise field, and the mapping Fij can be used

to characterize texture models. In the case which will be described in
most detail, a region will be characterized by constant intensity so that

F ij(ij - r if X j mm (2)

Furthermore, Nj will be assumed to be a white Gaussian field with zero
2

mean and variance a , i.e.

, i o a 2 (3)

-S

a.*1**
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MAP Segmentation

The segmentation problem can now be simply stated as follows. Given

the observation matrix y= ryij find an estimate x i of the scene
ij

realization x = [x J. The alorithm presented below attempts to maximize
ij

the posterior probability or likelihood of x given y. In particular if
P(.) is an appropriate probability measure, then one would like to find the

estimate ; which maximizes P(I I Y = y). Using Bayes rule

P(1z;- I Y=Y) = ( v~I~(4)
P(Y=y)

Since P(Y=y) is independent of the estimate x, we can equivalently maximize

P(1X, Y=y) = P(Y=y I x) P (X = ) (5)

or

In P (Xx, Y=y) = In P(Y=y 1 I=x)

+ In P(1=x) (6)

The dynamic programming algorithm presented in the next section is an

* approximation to one which guarantees finding the x which maximizes (6).
It should be pointed out that the difficulty in maximizing (6) is that it

*! is a Joint log-likelihood for all the image data. It does not simply
describe the likelihood of a single pixel. In particular the maximizing

x, Is one of N possibilities.

Marko Random F'j dii4 .tdbeGAibb# Dj! Jt jQ L

Obviously, any processing algorithm for maximization of (6) will
depend critically on the form of P(I=x) and P(Y-y I X=x). In this
subsection, these measures are defined in the case where X is a Markov
random field characterized by a Gibbs distribution, and Y is given by (1)

: (3).
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To begin it -i5l be helpful to introduce some additional notation.
Let L de defined as - NIXN2 lattice characterizing all pixel locations in

the scene, i.e.

L= ((i,j): 1 i <N i, l< j j N2) (7)

Next let Yi define a set of neighbor sites for the pixel (i, j) but
ij

excluding (i, J) itself. Two simple neighborhoods are depicted in figure
1. These are:

1 2 2
= (1M): 0 < (i - 1) + (j ) _ 1) (8)

2 (0, ): 0 < (i - 1)2 2 (9)

Finally, define qL to be the collection of all neighborhoods in L, or a

neighborhood system. Then I and vL2 characterize the collection of all

neighborhoods q and 1ij 2  i.e.

= ij) a L) (10)

2 2

qL = Nij : (ij) a L) (11)

Given this notation, a Markov random field can then be defined as

Definition 1:

A random field on a lattice L is a markov random field with respect to
a neighborhood system 11L if and only if

iP(Xlj = xij I Xin = xlm, (1, m) e L, (lm) #(i,j)

!= Pll ij=Xlj X is= xIs' Ol'm)64i j )  (12)

If in addition to (12) P(X = x) ) 0 for all realizations x, then X can be
* .characterized by a Gibbs distribution defined on the neighborhood system

"L[2], [31. In order to define the Gibbs distribution it is necessary to

introduce the notion of the cliques of a neighborhood system. Simply, a

1,
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clique is any set of nixel locations for which any two are neighbors of1 2
each other. Figure 2 sbow the types of cliques found for the I and qL

neighborhood systems. Let be the collection of cliques for the

neighborhood system RL" The Gibbs distribution can now be defined as

follows

Definition 2:

The Gibbs probability distribution has the form

P(I x) =1 0 U(x) (13)Z

Ux) = Vcx) (14)

ceC(qL)

A energy function

Vc(x)A potential associated with clique C

cU)

Z = • (15)

_ partition function

As can be seen from the definition Z is simply a normalizing constant so
that the sum of the probabilities of all realizations, x, add to one. Thus
the key functions in determining the properties of the distribution are the
potential functions V (x). The only limitation on V (x) is that it only

o c
";% depend on the values of the pixels in clique c. We will consider

homogeneous fields where the form of V c(x) is fixed by the structure of the

clique c and not its location in the lattice. For the segmentation
algorithm discussed in t'he next section, the potential functions were
chosen to exploit spatial continuity, and for simplicity of calculation.
We have modelled the region clustering as being characterized by a Markov

2
random field over the neighborhood system TL" The most general form we use

for the potential functions V (x) are given in Table 1.
* c

9,j

49. " ., o . " . . ' . , ' . . ' . . ' - . .. ' - ' * ' ' ' " ." . ' , o ' , . ' -' , ' " ' i " i "2 2 ? " " i " " " " " " .
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Cl ique
No. Structure Potential
1 [(ioj)] V c ) =a if x. .i a

2 ** (I,j),(i, J+1)1 V~ (xW P1 if x ijIj+ 1

-01 otherwise

3(~)(-,) V x) p 2 if x..- x, + 1, ,j

-2otherwise

4 (C~)C-,1]V cx) = P3 if 'i I-~~

_P3 otherwise

5 10,[( .0(+1, J+1)] V C x) = P4if x j= x ,

-p4 otherwise

6 V (~) 11 ) V(z) if all x in c are

(i, J+e1)J equal

-yj otherwise

7 * [(i,j),i-i,j). (i,j+l)J V cx) = 2i l ~ in c are

equal

_2otherwise

a l (i.J).Ci,j-..).(i+1,p1l)] V cx) = Y3if all xij in c are

equal

7Y3 otherwise

9 C~ ~ )(~~)(-,+~ V7x = Y if all :i in c are

equal

7Y4 otherwise

10 1(i~j).(i-l,j),(i~j+l), V (z) = a if all :i in c are

(i~p1)Jequal

-Iff otherwise
I? LEl1

Potential Funct.c .s for Segaentation Algorithm



The parameters a i , Pi, Ti, a, need to be estimated for certain classes

of scenes. Although this is a difficult problem, there are methods in the
literature for estimating these parameters, see [31 - [51. However, we are
not using the Gibbs distribution to model textures or detailed shape. We
just want to model the fact that regions are clusters of pixels, i.e.
spatial continuit- within regions. For the examples in section IV, we use
only cliques 1-5, an#- in many cases just cliques 2 and 3, e.g. yi=oi = 0.

The nonzero parameters %ere chosen by trial and error. Although for a
given signal to noise rati, the algorithm was relatively insensitive to the
choice of these values, as the signal to noise ratio changed we found it
necessary to modify the values We are presently studying this phenomena
more carefully as well as determining new schemes for estimating these
parameters for the context in which they are being used.

Finally, since a particular realization of the Gibbs field, x, assigns
each pixel to one of the M region types, using the Gaussian noise model an
appropriate form for P(Y=y I X=x) is

P(Y=y o) TT J( Zl) , exp(jj (y. -r)) (16)

mm

;,

.4

e .



111. NEAR OPTIM. W:%P SBGMENTATION

In this section, an ptimal algorithm is posed for processing images
consisting of a few rows. The complete near-optimal algorithm is then
obtained by applying this optimal processor on overlapping strips of the
larger N IN image. This algorithm will be near optimal when correlation

1 2
between the random variables in Xi drops rapidly as their vertical

ij
distance increases. This assumption appears reasonable in the sense that
it can often be shown for one dimensional Markov chains. However,
calculation of correlations in a Uarkov random field is extremely difficult
even for the simplest case (Ising Model [2]), and is an unresolved problem
in the statistics literature.

First consider the problem of segmenting a DXN2 image, D << N1 . Let

£(.) denote a log-likelihood function. Using the Gibbs likelihood and the
conditional data likelihoods derived in the last subsection of section I,
we can write the following expression for the joint log-likelihood of the
image data y and a realization x of the Gibbs field X:

Z(Y=y, X=x) = Z(Y=y X=x) + Z(X=x) (18)

V(X=X) = -Inz + V (x) (19)

L c

Z(Yy I I=x) =-DN In(2uar)- j-r. (20)

"=1 (i,J) Si

Observe that we can calculate (18) recursively as follows

il1-DN 1  2

= ln(21w ) -ln Z

M
2

Rk Rk-1 +  Vc(x) -2 - ij-m

cCk-1, k m=l (i,1)sS k

,-" -
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ck-1, k =csCk 2): c contains only pixels in column k or only pixels

in columns k - and k I

kS [ (i,j): x.. = m, j kI 1< i < V

This recursion in conjunction with the principle of optimality allows

formulation of a forward dynamic programming algorithm [7] for finding x.
The state space associated with the dynamic programming algorithm has

dimension MD since there are MD possible segmentations of each column of
the DXN2 scene. This implies that the algorithm would have N2 iterations

with on the order of M2D calculations during each iteration. Thus
this algorithm may only be computationally tractable for small values of Nl
and D, e.g. 2 (_ M, D < 4. Although using the technique described below,
full size images can be processed with reasonable computation speeds, we do
only recommend the algorithm be implemented for segmenting images into at
most 1=4 region types. We are presently working on a method which allows
this algorithm to be applied iteratively to segment images for which M > 4.
More will be said regarding this in Section V. Since this is a standard
dynamic programming application, details will not be given. However, two
important remarks are in order.

Remark 1

Observe that the value of 0 is independent of any segmentation x, and

hence the algorithm can be initialized by setting 0 = 0. In particular,

there is no need to undertake the difficult task of calculating the
partition function Z.

Remark 2

In order to calculate potentials for all cliques in column one and row
one of the (DXN 2 ) image, it is necessary to assume a segmentation for a

ficticious column zero and row zero. This corresponds to a boundary
condition for the Markov random field I. An appropriate choice for these
boundary conditions will be discussed below.

In order to use the dynamic programming algorithm described above
which is capable of optimally processing a DXN 2 strip of an N1XN2 image

N >>D, we will assume the random variables Xij and Xi+D, j for all (i,j) to

have negligible correlation or covariance. Thus, the segmentation for row
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I should be negli&-b " impacted by the segmentation of row i+D. In view of
this, the complete ue ntation procedure is described by the following
algorithm.

Seamentation Algorithm

Step 0) Choose a value for D, 2< D < 4,

Step 1) Set I = 1

Step 2) Apply Dynamic Programming Algorithm to rows I through I+D-1

Step 3) Store the segmentation for row I

Step 4) Set I = 1+1

Step 5) If I < N -D+I, go to 2

Step 6) D = D-1

Step 7) If D _> 1. go to 2

Step 8) Stop

To summarize, the dynamic programming algorithm is applied to
overlapping image strips of width D, but only the segmentation of the first
row of that strip is used. For example, the processing of rows I through D
yields a segmentation for row 1, and the processing of rows 2 through D+1

%" yields a segmentation of row 2. Under the correlation assumption above,
this algorithm is near optimal since the data in row I + D will have little
impact on the segmentation of row I.

As pointed out in Remark 2 above, the strip dynamic programming
algorithm requires a fixed segmentation or boundary condition for row I-I
and column 0. For I = 1 (i.e. row 0) and column zero, we arbitrarily

assume all pixels to be backround pixels, i.e. x = x0 Mb where 
M be [D,

2, ..., N) and Mb is the assumed background intensity. Although this is

somewhat arbitrary, if the correlation assumption holds both vertically and
horizontally, it will have negligible impact on the segmentation of the
scene for i ) D and j ) D. For I ) 1 we use the fixed segmentation of theK previous row to initialize the strip processor.
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IV. EXAMPLES

In this section, some examples are presented which are representative
* of the performance of the algorithm and which highlight some of its

properties. To begin, conside: figures 3 and 4. They show the results of
applying the algoirthm to (64 1 64) test images consisting of an objectK" either an ellipse or a diamond, on a background. Thus, WI2. For these
examples, the images were corrupted by additive white zero mean Gaussian
noise fields with variances such that the signal to noise ratio S/Nl2 where
we define

Ir - r 2'SIN= 1-

a

The values of rl, r2, and a were assumed known and the algorithm was

applied with D=4 and all Gibbs parameters set to zero except the P,. For

the ellipse of Figure 3 pi = 0.2 while for the diamond of Figure 4

Pi = 0.15 i=1,2,3,4. The top row of each figure from left to right show

the original and noise corrupted images, while the bottom row from left to
right show the Gibbs algorithm segmentation, and the result of filtering
the segmented image through a (3 X 3) median filter. As can be seen by
comparison of the two figures, the algorithm performs well at this signal
to noise ratio but as the magnitude of the Gibbs parameters decreases, the
algorithm becomes subject to more single pixel errors. This is consistent
with expectation since in this case the Gibbs distribution is weighted less
relative to the data terms in the likelihood function. Thus there is less
emphasis on spatial continuity in the likelihood.

Figures S - 7 show the result of applying the algorithm to an ellipse
in noise such that S/N = 1 using D-2,3,4. Although performance is best for
D=4 there is surprisingly little degredation in performance as D decreases.
In all three figures Pi=0.175, i=1,2,3,4 and all other Gibbs parameters

were zero.

Figures 8 and 9 show the results of applying the algorithm to a
diamond in noise such that S/N=1. In both figures D=4, however by
comparison of figures 8 and 9, one can see the improvement in performance
which can be obtained by assuming some additional prior knowledge of shape.
For Figure 8 pi-0.2 1-12,3.4 and all other Gibbs parameters were zero.

For Figure 9. realizing that the object had diagonal edges, the diagonal
cliques were mphasized relative to the horizontal and verticle cliques.
i.e. 01=2=0.15 mad 03=J4=0.25 while all other parameters were zero. For

,~~~~~~~~. . .. .... .. . .. .. . . .i , i -' . ." - " . -
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the latter case, tht shape of the diamond was more obvious in the
segmentation.

For Figures 10 -17, he algorithm was applied to two test images,
each containing *=4 region types. For Figures 10 - 15 D=2 while for
Figures 16 and 17 D=3. We usel D--2 to keep computation times down, however
as can be seen from Figures 12 - 15, while performance at S/N1.5 is
reasonable, performance at SIN=1 is not. For M=4. we define the signal to
noise ration as

i

r. miiiIr -r I
SIN - in j

j a

i.

Increasing to D=3 did considerably improve performance at SIN1, however
CPU time for this case on a VAX 11/780 was 60 minutes as compared to 4
minutes for Kr4 and D=2 and 7 minutes for a=2 and D=4. tois is our
motivation for going to the hierarchical scheme for handling multi-region
images (1 > 3) which will be briefly outlined in Section IV below. We also
point out that we are rewriting our code to make use of look-up tables and
anticipate a factor of 10 or better Improvement in computation speed.

Finally, for Figures 19 - 21, the algorithm was applied to (64 X 64)
sections of the synthetic aperture radar Image shown in Figure 18. Figure
19 shows the result of applying algorithm to a mall bay, while in Figure
20, there Is a river with some bridges, and in Figure 21 there is a boat.
In all cases, we assumed 7=2. and obtained r,, r 2 and a by applying the

method of moments under the assumption that the (64) 2pixels in the scene
where samples of a random variable characterized by a distribution which
was a mixture of two Gaussian distributions. Each picture shows the

original scene and three segmentations corresponding to different Gibbs
parameters. For Figure 19, proceeding clockwise around the picture we had

19 shw h reul ofapyn agrtmt a a =and aile inFigure

a0 1 r05 (white), a2e 05 (black) and all Pi=0.25 1 2= and a .1

Qa2and all P=0.15. For Figure 20. we had, al .05 (white), .2-05
(black), and all as, 0 .w a =.05, a -.05, and all 0b-t0.125, =0 and all

pa- t. For Figure 21 we had, prce2=0 and all i=0.2 1=0d2=0 and all

Pi=0. 3 5 , ol-0.1, 42-0.1 and all 0i=0.35.

V '

.
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V. CONCLUDING R:MxAKS

This report has prese ted a new approach to segmentation of noisy
images. It uses the Gibbs aistribution to model spatial continuity or
clustering properties of regio.s. The algorithm is recursive in nature,
requires a single pass on the data, and works well at low signal to noise
ratios.

Presently, two extensions to this algorithm are being developed. The
first allows computationally efficient segmentation of images with more
than two region types. If there are N region types, the two region
version of the algorithm is applied M-I times. Thus computation time grows

- linearly with the number of regions. To see how this can be done consider
the case where M=4 and for convenience, the regions have been labelled so
that rI< r 2 < r 3 ( r4. The two region algorithm can first be applied using

region means of r2 and r3. Since r, < r2 and r4 ) r3 the result will be a

segmentation grouping regions I and 2 together, and regions 3 and 4
together. Next the two region algorithm is applied to the image using
region means of r, and r2. However, only pixels classified as being in the

region with mean r2 during the first pass are classified in the second

pass. Those classified as being in the region with mean r3 during the

first pass are ignored. This yields a three class segmentation into
regions 1. 2 and the combined regions 3 and 4. To separate regions 3 and 4
a third pass is made using region means r3 and r4 but ignoring those pixels

assigned to regions I and 2 during the first pass. We feel that this
hierarchical algorithm will have little effect on the near optimality of
the overall approach, however we have no examples to show at this time.

The second extension is to textured images. In this case, instead of
modelling regions as being of constant intensity but imbedded in

* uncorrelated noise, we assme textured regions are realizations of a second
Gibbs distribution. In this case, we are developing algorithms similar to
the one given above, but with the Gaussian (quadratic) data term in the
log-likelihood replaced by terms associated with the second Gibbs
distribution characterizing texture. In this context, we are also
developing new methods for Gibbs parameter estimation in texture images.
The main difference between our work on texture modelling and that in [4],
[S is that we are experimenting with different types of potential
functions V (x).

In conclusion, we feel that the applications of Gibbs models to
problems in image processing and image understanding are just beginning to
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emerge. It is pou.nilally a very powerful tool but there are still many
problems to be resoy.
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(a) (b)

Figure 1 - Neighborhoods nij(a) and (b)

-q

I I LIII

LIE]
(a) (b)

Figure 2 -Cliques for neighborhood systems n I (a) and 2 (b)
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Figure 4 -Segmentation of a diamond with S/N=2
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-Oa

Figure 8 - Segmentation of a diamond with S/N=1 and
all 0i equal

Figure 9 - Segmentation of a diamond with S/N-1 and sfor
diagonal cliques emphasized
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Figure 10 -Segmentation of a four region diamond test
image with S/N=2 and D=2

Figure 11 -Segmentation of a four region elliptical test
* image with S/N=2 and 0-2
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Figure 12 -Segmentation of a four region diamond test
image with S/N=l.5 and D

Figure 13 - Segmentation of a four region elliptical test
image with S/N=1.5 and D=2
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Figure 14 -Segmentation of a four region diamond
test image with S/N=l and 0=2
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Figure 15 -Segmentation of a four region elliptical
test image with S/N=l and D-2
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Figure 167 Segmentation of a four region dlimond es
tetimage with S/N and D
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Figure 19 -Three segmentations of a (64 x 64)
Section of SAR image containing a small bay
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Figure 201 Three segmentations of a (64 x 64) section of
SAR image containing rie wiathrde
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